On Seneta’s Constants for the Supercritical Bellman-Harris Process with E(Z+ log Z+) = ∞

نویسنده

  • Wolfgang P. Angerer
چکیده

For a finite mean supercriticial Bellman-Harris process, let Zt be the number of particles at time t. There exist numbers χt (the Seneta constants) such that χtZt converges almost surely to a non-degenerate limit. Furthermore, χt ∝ e −βt L(e), where β is the Malthusian parameter, and L is slowly varying at zero. We obtain a characterisation of the slowly varying part of the Seneta constants under the assumption that the lifetime distribution of particles is strongly non-lattice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ja n 20 06 On Seneta ’ s Constants for the Supercritical

For a finite mean supercriticial Bellman-Harris process, let Zt be the number of particles at time t. There exist numbers χt (the Seneta constants) such that χtZt converges almost surely to a non-degenerate limit. Furthermore, χt ∝ e −βt L(e), where β is the Malthusian parameter, and L is slowly varying at zero. We obtain a characterisation of the slowly varying part of the Seneta constants und...

متن کامل

Large Deviations for Supercritical Multi-type Branching Processes

Large deviation results are obtained for the normed limit of a supercritical multi-type branching process. Starting from a single individual of type i, let L[i] be the normed limit of the branching process, and let Z k [i] be the minimum possible population size at generation k. If Z k [i] is bounded in k (bounded minimum growth) then we show that P(L[i] ≤ x) = P(L[i] = 0) + xF ∗[i](x) + o(x) a...

متن کامل

On the volume of the supercritical super-Brownian sausage conditioned on survival

Let and be positive constants. Let X be the supercritical super-Brownian motion corresponding to the evolution equation ut = 12 + u u2 in Rd and let Z be the binary branching Brownian-motion with branching rate . For t 0, let R(t) = Sts=0 supp(X(s)), that is R(t) is the (accumulated) support of X up to time t. For t 0 and a > 0, let Ra(t) = Sx2R(t) B(x;a): We call Ra(t) the super-Brownian sausa...

متن کامل

Some results on value distribution of the difference operator

In this article, we consider the uniqueness of the difference monomials $f^{n}(z)f(z+c)$. Suppose that $f(z)$ and $g(z)$ are transcendental meromorphic functions with finite order and $E_k(1, f^{n}(z)f(z+c))=E_k(1, g^{n}(z)g(z+c))$. Then we prove that if one of the following holds (i) $n geq 14$ and $kgeq 3$, (ii) $n geq 16$ and $k=2$, (iii) $n geq 22$ and $k=1$, then $f(z)equiv t_1g(z)$ or $f(...

متن کامل

On the capacity of the general trapdoor channel with feedback

The trapdoor channel is a binary input/output/state channel with state changing deterministically as the modulo2 sum of the current input, output and state. At each state, it behaves as one of two Z channels, each with crossover probability 1/2. Permuter et al. formulated the problem of finding the capacity of the trapdoor channel with feedback as a stochastic control problem. By solving the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008